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Abstract. For Landau polynomials which are invariant under some representation of a 
finlte group and which satisfy a non-degeneracy condition two methods of calculating the 
number of orbits of complex critical points with a given isotropy subgroup are given. 
Neither method uses the explicit form of the polynomial. 

1. Introduction 

This note describes two methods of calculating the number of orbits of complex critical 
points with a given isotropy subgroup, for Landau polynomials which are invariant 
under some representation of a finite group and which satisfy certain non-degeneracy 
conditions. The methods differ in the information they need about the group and in 
their range of applicability. Both methods require a knowledge of which subgroups 
of the group appear as isotropy subgroups for the representation concerned; in addition 
the first method, given in 0 2, uses the character table of the group while the second, 
described in § 3, uses the 'table of marks' (Burnside 1897) of the set of (conjugacy 
classes of) isotropy subgroups. Since the character table of a group is frequently 
available, whereas the table of marks is relatively unknown, the first method is usually 
more convenient. However, it has the disadvantage of not always working (as the 
example in § 5.3 shows) whereas the second method is guaranteed to give an answer. 

Let G be a finite group which acts on R" by means of a faithful representation 
D : G +  O(m) and let f ( x ;  a) be a polynomial function of x E R" depending on a 
vector of parameters a and which is invariant under the action of G, i.e. 

Write f (x ;  a) as 

f,(x) =f(x;  a) =f(d)(X; a) +f(d-')(X; a) +. . . +f"'(x; a) +f'O'(a) 

wheref"'(x; a) is homogeneous of degree r in x. The non-degeneracy condition that 
f, is required to satisfy is as follows. 

( C )  All the complex critical points of fa are non-degenerate, i.e. if X,,E C" is a 
critical point, the Hessian matrix ( a ' f / a x , a ~ ~ ) l ~ = ~  has rank m. It follows that the 
critical points are isolated and finite in number. 

t Supported by a Leverhulme Trust Overseas Studentship. 

0305-4470/84/ 132573 +08$02.25 @ 1984 The Institute of Physics 2573 



2574 M Roberts 

For example, the polynomial 

f( x, y ; a )  = a ( x4 + y 4 )  + bx2y2 + c (  x 2  + y 2 )  + d 

will satisfy (C) if and only if a # 0, b # * 2 a  and c # 0. 
; a) satisfies (C) will either 

be empty or will be the complement of a subset of the parameter space given by the 
zeros of a set of polynomial equations and hence will be open and dense. For any 
finite group G and representation D a polynomial function f of the second type can 
always be found, if the degree d is allowed to be large enough: in practice d = 4 is 
usually sufficient though sometimes it is necessary to go to d = 6 .  

For a givenf; the set of parameter values a such thatf( 

2. Method 1 

The set of all isotropy subgroups of points X E R "  is divided into conjugacy classes, 
the conjugacy class of H < G being denoted by ( H ) .  Let { H i } i G I  be a set of isotropy 
subgroups, one taken from each conjugacy class. If x is a critical point of an invariant 
function f; then so is D(g )  x for all g E G ;  I shall call the orbit {D(g)  3 x ;  g E G} a 
critical orbit off:  If x has isotropy subgroup H then D(g)  . x has isotropy subgroup 
gHg-'; so to each critical orbit o f f  there is associated a conjugacy class of isotropy 
subgroups of G. 

Let fo be an invariant Landau polynomial satisfying (C) and let SZ be the set of 
critical points of fa. By Bezout's theorem R contains (d - 1)" points and, by the 
remarks above, these points are permuted by the action of G ;  thus R is a 'G-set' of 
order (d-1)"  (Serre 1977). The action of G on SZ induces a linear action on the 
vector space Map(SZ,@), of all mappings of SZ into C giving a representation of G 
called the 'permutation representation' of SZ.  The character x of this representation 
is easily seen to be given by 

x (g )  = the number of critical points of f  fixed by g E G. 

For g E G, fo has a critical point at x E Fix(g) if and only if the restriction of fa to 
Fix(g) has a critical point at x (this is a special case of the 'principal of symmetric 
criticality' (Palais 1979); using this and the symmetry of the Hessian of fo at a critical 
point, it can be shown that, for each g, the restriction of fa to the fixed point set of g 
also satisfies (C) and so will have ( d -  l ) f (g)  complex critical points, where I(g) = 
dim Fix(g); these will be precisely the critical points of fa which lie in Fix(g). In 
other words: 

Theorem 1 .  

x(g )  = (d  - l)f(g).  

If fa has n ( H , )  critical orbits with isotropy groups in ( H i ) ,  then R is equal to the 
disjoint union 

Il n ( ~ , )  * (G/Hi)  
ic I 

(where n ( H , )  (G/H, )  means the disjoint union of n ( H , )  copies of G/Hi) .  The character 
of the permutation representation of a union of G-sets is the sum of the characters of 
the individual G-sets. Since the character of the permutation representation of G /  Hi 
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is 1 E,, the character of G induced from the trivial character lH ,  of Hi, it follows that 

Let 
implies the following. 

be a complete set of irreducible characters of G ;  then the above expression 

Theorem 2. 

(x ,  x j )  = 1 n(H,,(l E,, X j ) ,  .i E J, 
iE I 

where ( , ) is the usual 'inner product' of characters 

(x ' ,  x") = ( l / G )  c x ' ( g ) x " ( g - ' ) .  
B E G  

Since both (x ,  x,) and (1 E,, x,) can be calculated from a character table of G (using 
theorem 1 in the first case and Frobenius reciprocity (Serre 1977) in the second), 
theorem 2 gives a set of linear equations for the integers n(H,). Unfortunately these 
equations do not always have a unique solution, as the example in $5.3 shows; however, 
such cases seem to be rare, and when they do occur the method of F3 3 can be used. 

Theorem 2 also leads to an explicit expression for the total number of complex 
critical orbits off :  For any i we have (1 E,, 1 G )  = 1 and so 

(xt lG)= c n(H,)(l:,, IC?)= c n(H,) 
I €  I I €  I 

and we have the following corollary. 

Corollary 3. The total number of complex critical orbits of f  is equal to 

(1 /G)  ( L I - ~ ) " ~ ' .  
8 E  G 

3. Method 2 

In the second method of calculating the integers qH,) ,  i E I, Bezout's theorem is applied 
to the restriction of f o  to Fix( H r )  for each i E I, instead of Fix(g). Thus, for essentially 
the same reasons as in 0 2,  if m ( H , )  = dim Fix( HI) the restriction of fa to Fix(H,) will 
have ( d  - l)"'Hi' complex critical points and these will be precisely the critical points 
offn which lie in Fix(H,). 

For each pair of isotropy groups HI, HI let e( HI, H,) be the number of fixed points 
ofthe action of H, on G /  H, obtained by restricting the natural action of G ;  in (Burnside 
1897) e ( H l ,  H,) is called the 'mark' of H, on HI. Then the number of critical points 
offu fixed by HI is clearly equal to X,EJ e(&, H,)n(Ho and so we have theorem 4. 

Theorem 4. 

I E  I 

This theorem gives a set of linear equations for the qH,) ,  analogous to theorem 2. 
However, this set of equations always has a unique solution, since the matrix (e(&,  Hi)) 
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is invertible. To show this, first note that the set { ( H i ) } i c r  of conjugacy classes of 
points x E R" can be partially ordered by letting ( H i )  < ( H,) if there exists g E G such 
that gHig-'  c Hj. If ( H i )  P ( H,) then e( Hi,  H,) = 0 and, if (Hi) = ( H j ) ,  e( Hi, H j )  = 
( N ( H i ) / H i I  # 0 where N ( H i )  is the normaliser of Hi in G). It follows that Z can be 
ordered so that (e(Hi, H j ) )  is a lower triangular matrix with non-zero elements on the 
diagonal and so is invertible. 

In fact the solution can be made explicit (using a generalisation of the Mobius 
inversion formula (Hall 1967)) as follows. Define P (  Hi, Hi)  inductively by 

?(Hi, H i )  = l /e(Hi,  H i )  

and 

Then ( P (  Hi, H,)) is the inverse of ( e (  Hi, Hj)), and so we have: 

Corollary 5. 

Adding together these expressions for the qH,) gives a result analogous to corollary 3. 

Corollary 6. The total number of complex critical orbits of fu is equal to 

1 P(H,, 4 ) ( d  - l)"'HJ'. 
i j  

The advantage of this method over that of 0 2 is clear; it always works. Its 
disadvantage is simply that the matrix of marks, e ( &  H,), of a group is not as well 
known as the character table. 

4. 

An isotropy subgroup of G is said to be 'maximal' if it is maximal in the set of isotropy 
subgroups of points x E R"\{O} with respect to the ordering given by inclusion. For 
a long time it was conjectured that, under suitable conditions, the absolute minima of 
Landau polynomials always have maximal isotropy subgroups (Michel 1983) ; however, 
a counterexample has recently been found (Jaric 1983). Here I shall give a simply 
checked sufficient condition for the conjecture to be true. This follows from the 
following theorem which is proved by applying Bezout's theorem to the restriction of 
fu to Fix(H). 

Theorem 7. If (H) is a conjugacy class of maximal isotropy subgroups and fu satisfies 
condition (C) and has degree 33 ,  then it has a complex critical orbit with isotropy 
groups in (H). 

Let c be the number of conjugacy classes of maximal isotropy subgroups. 
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Corollary 8. If fa is as in theorem 4, then it has at least 1 + c  complex critical orbits. 
If the number of complex critical orbits is equal to 1 + c, then they all (excluding that 
at the origin) have maxiamal isotropy subgroups. 

This together with the formula of corollary 3 or corollary 5, calculating the number 
of complex critical orbits, gives the required sufficient condition. 

5. Examples 

5.1. 

Let G = Oh and D be the three-dimensional representation given by the symmetries 
of a cube. The group G has 48 elements, 15 leaving only the origin fixed, 23 fixing a 
one-dimensional subspace, 9 a two-dimensional subspace and only the identity fixing 
the whole of R3. If fa is a Landau polynomial of degree 4 satisfying (C) (these exist 
and therefore, by a remark in 8 1, occupy an open dense subset of the space of all 
invariant polynomial functions of degree 4) then it will have (by corollary 3) 

complex critical orbits. 
The isotropy subgroups of the action of Oh on I W ~  are: 
(i)  G at the origin, 
(ii) subgroups isomorphic to D4, D, and D2 along the three different types of axes 

(iii) cyclic groups of order 2 on the planes of symmetry, 
(iv) the trivial group elsewhere. 

of symmetry, 

The conjugacy classes are the obvious ones, except that the cyclic groups of order 2 
divide into two classes, corresponding to the two types of symmetry planes. They are 
denoted by 

The maximal conjugacy classes are (D4), (D3) and (D2) and a polynomial of degree 
4 satisfying (C) can, by corollary 8, have only these and G as conjugacy classes of 
isotropy subgroups of critical orbits. A similar calculation for a degree-6 polynomial 
would show that fa has ten complex critical orbits; using method 1 would show that 
these ten are divided up as: 

1 orbit with isotropy subgroup G (the origin), 
2 orbits with isotropy subgroups in (D,) for each r = 2, 3, 4, 
1 orbit with isotropy subgroups in (C2), 
2 orbits with isotropy subgroups in (CS). 

For an explicit calculation of the extrema in this example see (Jaric 1982). 

5.2. 

G = D6 and D is the two-dimensional representation of D6 given by the symmetries 
of a regular hexagon in the plane. To find an invariant polynomial satisfying (C) it 
is necessary to take d at least 6. The group D6 has twelve elements, the identity, five 
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non-trivial rotations which fix only the origin and six reflections which fix the lines of 
symmetry of the hexagon. Applying theorem 3 shows that any invariant polynomial, 
fm, of degree 6 satisfying (C) must have 

A( 1 x25  + 6  x 5 + 5  x 1 )  = 5 

complex critical orbits. 
The conjugacy classes of isotropy subgroups are: 
(i) G at the origin, 
(ii) two conjugacy classes, (C2), (CL), of cyclic groups of order 2 on the reflection 

planes, 
(iii) 1 elsewhere. 

The maximal conjugacy classes are (C2) and (CL). 
Corollary 8 cannot be applied to deduce that the five critical orbits of fa must have 

maximal isotropy subgroups so theorem 2 is used. It turns out that the one-dimensional 
characters are sufficient for the calculation : these are given by the following table. 

XI x 2  x 3  x4 

rk  1 1 (-Ilk ( - I l k  
s r k  1 -1 (-Ilk (- Ilk+' 

(k = 0, . . . , 5 ;  the rk  are the rotations in D6, the srk the reflections.) 
x is given by theorem 1 and a straightforward calculation shows that 

1 i f i = 1 ,  
otherwise, ( 1  g, xi)= { 

Substituting into the equations of theorem 2 gives 

5 = nG + n(c2) + qc;, + n,, O = n l ,  

2 = qc,, + n,, 2 = n(c;) + n,. 
So nG = 1 ,  qCl) = 2, nee;) = 2 and n, = 0 and, in fact, all critical orbits (except that of 
0) have maximal isotropy subgroups. 
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5.3. 

Let G = D2 = { 1, g, h, gh} and D be the regular representation of G, that is the four- 
dimensional permutation representation associated to the G-set consisting of G acting 
on itself by multiplication. 

The isotropy subgroups of D are G itself, the trivial group 1 and the cyclic groups 
Cg = (1 ,  g), c h  = (1,  h ) ,  Cgh = ( 1 ,  gh). The cyclic groups of order 1 are pairwise non- 
conjugate and each has a two-dimensional fixed point set; G has a one-dimensional 
fixed point set. 

Method 1 
The character table of G is: 

XI x2 x3 x4 

1 1 I I 1 
g I 1 - 1  - I  
h I - I  1 -1  
gh 1 - I  - I  1 

Consider a non-degenerate Landau polynomial of degree 4; if x is given by theorem 
1, then 

X k )  = X ( h )  = X k h )  = 9 and x(1)=81 

and 

(x, X I )  = 27,  (x, XJ = 18, i = 2 , 3 , 4 .  

Also 

if i = 1 , 2 ,  
if i = 3 , 4 ,  

if i = 1,3, 
if i = 2 ,4 ,  

i f i=1 ,4 ,  
if i = 2 , 3 .  

(lCG,, X J  = { 

Substituting into the equations of theorem 2 gives 

2 7 = n G + n c g + n c , + n C g h + n , ,  

18 = nc, + n , ,  18 = nch + n , ,  18 = nCRh + n , .  

The positive integer solutions are 

n ,  = a, 

a = 14, 15, 16, 17, 18, 

nc, = nch = nCgh = 18 - a, nG = 2 a  - 27, 

so the solution is not unique. 
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Method 2 
The table of marks of G is: 

I 4 0 0 0 0 
2 0 0 0 
0 2 0 0 

G 1 I 1 1 1 

c, 2 

C g h  0 0 2 0 
C h  

Thus theorem 4 gives the equations 

3 = n G  9 = 2nc, + n, 9 = 2 n c h  +n, 

9 = 2ncg, + n ,  81 = 4 n ,  +2ncg +2nch +2nc,, +nG 

which have the unique solution 

nG = 3 = nc, = nch = nCgh, n,  = 15. 
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